Synoptic Map-Pattern Classification Using Recursive Partitioning and Principal Component Analysis
نویسندگان
چکیده
منابع مشابه
Phoneme Classification Using Kernel Principal Component Analysis
A substantial number of linear and nonlinear feature space transformation methods have been proposed in recent years. Using the so-called ”kernel-idea” well-known linear techniques such as Principal Component Analysis(PCA), Linear Discriminant Analysis(LDA) and Independent Component Analysis(ICA) can be non-linearized in a general way. The aim of this paper here is twofold. First, we describe t...
متن کاملQuantum image classification using principal component analysis
We present a novel quantum algorithm for the classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.
متن کاملanalysis and interpretation of bearing vibration data using principal component analysis and self - organizing map
induction motor bearing is one of the key parts of the machine and its analysis and interpretation are important for fault detection. in the present work vibration signal has been taken for the classification i.e. bearing is healthy (h) or defective (d). for this purpose, clustering based classification of bearing vibration data has been carried out using principal component analysis (pca) and ...
متن کاملRecursive Principal Component Analysis of Graphs
Treatment of general structured information by neural networks is an emerging research topic. Here we show how representations for graphs preserving all the information can be devised by Recursive Principal Components Analysis learning. These representations are derived from eigenanalysis of extended vectorial representations of the input graphs. Experimental results performed on a set of chemi...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2002
ISSN: 0027-0644,1520-0493
DOI: 10.1175/1520-0493(2002)130<1187:smpcur>2.0.co;2